2,581 research outputs found

    Artificial neural networks reveal individual differences in metacognitive monitoring of memory.

    Get PDF
    Previous work supports an age-specific impairment for recognition memory of pairs of words and other stimuli. The present study tested the generalization of an associative deficit across word, name, and nonword stimulus types in younger and older adults. Participants completed associative and item memory tests in one of three stimulus conditions and made metacognitive ratings of perceptions of self-efficacy, task success ("postdictions"), strategy success, task effort, difficulty, fatigue, and stamina. Surprisingly, no support was found for an age-related associative deficit on any of the stimulus types. We analyzed our data further using a multilayer perceptron artificial neural network. The network was trained to classify individuals as younger or older and its hidden unit activities were examined to identify data patterns that distinguished younger from older participants. Analysis of hidden unit activities revealed that the network was able to correctly classify by identifying three different clusters of participants, with two qualitatively different groups of older individuals. One cluster of older individuals found the tasks to be relatively easy, they believed they had performed well, and their beliefs were accurate. The other cluster of older individuals found the tasks to be difficult, believed they were performing relatively poorly, yet their beliefs did not map accurately onto their performance. Crucially, data from the associative task were more useful for neural networks to discriminate between younger and older adults than data from the item task. This work underscores the importance of considering both individual and age differences as well as metacognitive responses in the context of associative memory paradigms

    Chronic pain is common in mitochondrial disease

    Get PDF
    In the absence of cure, the main objectives in the management of patients with mitochondrial disease are symptom control and prevention of complications. While pain is a complicating symptom in many chronic diseases and is known to have a clear impact on quality of life, its prevalence and severity in people with genetically confirmed mitochondrial disease is unknown. We conducted a survey of pain symptoms in patients with genetically confirmed mitochondrial disease from two UK mitochondrial disease specialist centres. The majority (66.7%) of patients had chronic pain which was primarily of neuropathic nature. Presence of pain did not significantly impact overall quality of life. The m.3243A>G MTTL1 mutation was associated with higher overall pain severity and increased the likelihood of neuropathic pain compared to other causative nuclear and mitochondrial gene mutations. Although previously not considered a core symptom in people with mitochondrial disease, pain is a common clinical manifestation, frequently of neuropathic nature, and influenced by genotype. Given the impact on quality of life and treatment options available, pain-related symptoms should be carefully characterised and actively managed in this patient population

    Holographic Josephson Junctions and Berry holonomy from D-branes

    Full text link
    We construct a holographic model for Josephson junctions with a defect system of a Dp brane intersecting a D(p+2) brane. In addition to providing a geometrical picture for the holographic dual, this leads us very naturally to suggest the possibility of non-Abelian Josephson junctions characterized in terms of the topological properties of the branes. The difference between the locations of the endpoints of the Dp brane on either side of the defect translates into the phase difference of the condensate in the Josephson junction. We also add a magnetic flux on the D(p+2) brane and allow it evolve adiabatically along a closed curve in the space of the magnetic flux, while generating a non-trivial Berry holonomy.Comment: 20 pages, 2 figure

    Ab-initio Quantum Enhanced Optical Phase Estimation Using Real-time Feedback Control

    Full text link
    Optical phase estimation is a vital measurement primitive that is used to perform accurate measurements of various physical quantities like length, velocity and displacements. The precision of such measurements can be largely enhanced by the use of entangled or squeezed states of light as demonstrated in a variety of different optical systems. Most of these accounts however deal with the measurement of a very small shift of an already known phase, which is in stark contrast to ab-initio phase estimation where the initial phase is unknown. Here we report on the realization of a quantum enhanced and fully deterministic phase estimation protocol based on real-time feedback control. Using robust squeezed states of light combined with a real-time Bayesian estimation feedback algorithm, we demonstrate deterministic phase estimation with a precision beyond the quantum shot noise limit. The demonstrated protocol opens up new opportunities for quantum microscopy, quantum metrology and quantum information processing.Comment: 5 figure

    A review of RCTs in four medical journals to assess the use of imputation to overcome missing data in quality of life outcomes

    Get PDF
    Background: Randomised controlled trials (RCTs) are perceived as the gold-standard method for evaluating healthcare interventions, and increasingly include quality of life (QoL) measures. The observed results are susceptible to bias if a substantial proportion of outcome data are missing. The review aimed to determine whether imputation was used to deal with missing QoL outcomes. Methods: A random selection of 285 RCTs published during 2005/6 in the British Medical Journal, Lancet, New England Journal of Medicine and Journal of American Medical Association were identified. Results: QoL outcomes were reported in 61 (21%) trials. Six (10%) reported having no missing data, 20 (33%) reported ≤ 10% missing, eleven (18%) 11%–20% missing, and eleven (18%) reported >20% missing. Missingness was unclear in 13 (21%). Missing data were imputed in 19 (31%) of the 61 trials. Imputation was part of the primary analysis in 13 trials, but a sensitivity analysis in six. Last value carried forward was used in 12 trials and multiple imputation in two. Following imputation, the most common analysis method was analysis of covariance (10 trials). Conclusion: The majority of studies did not impute missing data and carried out a complete-case analysis. For those studies that did impute missing data, researchers tended to prefer simpler methods of imputation, despite more sophisticated methods being available.The Health Services Research Unit is funded by the Chief Scientist Office of the Scottish Government Health Directorate. Shona Fielding is also currently funded by the Chief Scientist Office on a Research Training Fellowship (CZF/1/31)

    Issues potentially affecting quality of life arising from long-term medicines use: a qualitative study

    Get PDF
    Background Polypharmacy is increasing and managing large number of medicines may create a burden for patients. Many patients have negative views of medicines and their use can adversely affect quality of life. No studies have specifically explored the impact of general long-term medicines use on quality of life. Objective To determine the issues which patients taking long-term medicines consider affect their day-to-day lives, including quality of life. Setting Four primary care general practices in North West England Methods Face-to-face interviews with adults living at home, prescribed four or more regular medicines for at least 1 year. Interviewees were identified from primary care medical records and purposively selected to ensure different types of medicines use. Interviews were recorded, transcribed and analysed thematically. Results Twenty-one interviews were conducted and analysed. Patients used an average of 7.8 medicines, 51 % were preventive, 40 % for symptom relief and 9 % treatment. Eight themes emerged: relationships with health professionals, practicalities, information, efficacy, side effects, attitudes, impact and control. Ability to discuss medicines with health professionals varied and many views were coloured by negative experiences, mainly with doctors. All interviewees had developed routines for using multiple medicines, some requiring considerable effort. Few felt able to exert control over medicines routines specified by health professionals. Over half sought additional information about medicines whereas others avoided this, trusting in doctors to guide their medicines use. Patients recognised their inability to assess efficacy for many medicines, notably those used for prophylaxis. All were concerned about possible side effects and some had poor experiences of discussing concerns with doctors. Medicines led to restrictions on social activities and personal life to the extent that, for some, life can revolve around medicines. Conclusion There is a multiplicity and complexity of issues surrounding medicines use, which impact on day-to-day lives for patients with long-term conditions. While most patients adapt to long-term medicines use, others did so at some cost to their quality of life

    Shortcuts to adiabaticity in a time-dependent box

    Full text link
    A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential analogous to those used in soliton control. The method is extended to a broad family of many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential.Comment: 6 pp, 4 figures, typo in Eq. (6) fixe

    Dynamic changes in the epigenomic landscape regulate human organogenesis and link to developmental disorders

    Get PDF
    How the genome activates or silences transcriptional programmes governs organ formation. Little is known in human embryos undermining our ability to benchmark the fidelity of stem cell differentiation or cell programming, or interpret the pathogenicity of noncoding variation. Here, we study histone modifications across thirteen tissues during human organogenesis. We integrate the data with transcription to build an overview of how the human genome differentially regulates alternative organ fates including by repression. Promoters from nearly 20,000 genes partition into discrete states. Key developmental gene sets are actively repressed outside of the appropriate organ without obvious bivalency. Candidate enhancers, functional in zebrafish, allow imputation of tissue-specific and shared patterns of transcription factor binding. Overlaying more than 700 noncoding mutations from patients with developmental disorders allows correlation to unanticipated target genes. Taken together, the data provide a comprehensive genomic framework for investigating normal and abnormal human development
    corecore